Multiple cytochrome P450 enzymes responsible for the oxidative metabolism of the substituted (S)-3-phenylpiperidine, (S,S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine hydrochloride, in human liver microsomes.

نویسندگان

  • Larry C Wienkers
  • Michael A Wynalda
چکیده

(S,S)-3-[3-(Methylsulfonyl)phenyl]-1-propylpiperidine hydrochloride [(-)-OSU6162] is a weak dopamine D2 receptor modulator that possesses potential for the treatment of levodopa (L-DOPA)-induced dyskinesias in patients with Parkinson's disease. In this report, incubations with human liver microsomes revealed that (-)-OSU6162 is selectively metabolized via N-dealkylation to yield N-depropyl (-)-OSU6162. Kinetics evidence is presented that the N-depropylation of (-)-OSU6162 in human hepatic microsomes is mediated by multiple cytochrome p450 (p450) enzymes, in particular CYP2D6. This hypothesis is borne out by several lines of in vitro evidence; 1). incubations of (-)-OSU6162 (5 micro M) with hepatic microsomes from a panel of human donors showed that (-)-OSU6162 N-depropylase activity correlated well with CYP2D6-catalyzed dextromethorphan O-demethylase activity but not with other p450 enzyme-specific activities; 2). quinidine, a CYP2D6-specific inhibitor, inhibited (-)-OSU6162 N-depropylation, whereas other p450 enzyme-specific substrates/inhibitors did not significantly inhibit this activity; 3). CYP2D6 possessed highest intrinsic (-)-OSU6162 N-depropylase activity when compared with a battery of recombinant heterologously expressed human p450 enzymes. In addition, the selectivity of (-)-OSU6162 to inhibit six human p450 enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2E1, CYP2D6 and CYP3A4) was evaluated using an in vitro inhibition screen. Of the enzymes examined, only the activity of CYP2D6 was inhibited by coincubation with (-)-OSU6162. Thus, it is concluded that (-)-OSU6162 is metabolized by several p450 enzymes and that CYP2D6 accounts for the majority of the observed p450 N-depropylase activity in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytochrome P450 responsible for the stereoselective S-oxidation of flosequinan in hepatic microsomes from rats and humans.

The forms of cytochrome P450 involved in the stereoselective S-oxidation of flosequinan [(+/-)-7-fluoro-1-methyl-3-methylsulfinyl-4-quinolone] were investigated in vitro using liver microsomes from rats and humans. Rat liver microsomes supplemented with NADPH catalyzed the four different S-oxidations, which were from flosequinan sulfide (FS; 7-fluoro-1-methyl-3-methylthio-4-quinolone) to R(+)- ...

متن کامل

Comparison of prediction methods for in vivo clearance of (S,S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine hydrochloride, a dopamine D2 receptor antagonist, in humans.

The purpose of this study is to investigate reliable prediction methods for in vivo pharmacokinetics and the likelihood of drug interactions with several cytochrome P450 inhibitors in humans for (S,S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine (PNU-96391). By allometric scaling of in vivo animal data, clearance of PNU-96391 in humans was over-predicted by 4-fold, half-life was under-predic...

متن کامل

Cyclic conversion of the novel Src kinase inhibitor [7-(2,6-dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine (TG100435) and Its N-oxide metabolite by flavin-containing monoxygenases and cytochrome P450 reductase.

[7-(2,6-Dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine (TG100435) is a novel multi-targeted Src family kinase inhibitor with demonstrated anticancer activity in preclinical species. Potent kinase inhibition is associated with TG100435 and its major N-oxide metabolite [7-(2,6-dichlorophenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-{4-[2-(1-oxy-pyrrolid...

متن کامل

In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol.

Both the R(+) and the S(-) enantiomers of carvedilol were metabolized in human liver microsomes primarily to 4'- (4OHC) and 5'-(5OHC) hydroxyphenyl, 8-hydroxy carbazolyl (8OHC) and O-desmethyl (ODMC) derivatives. The S(-) enantiomer was metabolized faster than the R(+) enantiomer although the same P450 enzymes seemed to be involved in each case. A combination of multivariate correlation analysi...

متن کامل

Human biotransformation of bropirimine. Characterization of the major bropirimine oxidative metabolites formed in vitro.

Bropirimine (2-amino-5-bromo-6-phenyl-4-pyrimidinone) is a member of a class of antineoplastic agents known as aryl pyrimidinones. In human liver microsomal incubations, bropirimine oxidative metabolism is characterized by the formation of three metabolites. Mass spectrometric analysis of the incubation mixture revealed three bropirimine oxidative metabolites, identified as the bropirimine dihy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 30 12  شماره 

صفحات  -

تاریخ انتشار 2002